

Institute	Energy and Mechanical engineering
Department	Mechanical engineering

EDUCATIONAL PROGRAM

7M07228 - Advanced technologies of materials processing the name of educational program

Code and name field of education:

7M07-Engineering, manufacturing and civil engineering

Code and classification direction of personnel training:

7M072- Manufacturing and processing

Group of educational programs:

M113 Technology of materials pressure processing

EP purpose: 7

EP type: 7

Period of study: 2 years Volume of the credits: 120

Educational program <u>7M07228 - Advanced technologies of materials</u> (the name of educational program)

processing manufacturing

was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes 13 dated « 28 » 04 20 22.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes 7 dated « 26 » 04 2022

in the direction «7M072- Manufacturing and processing»

Educational program __7M07228- Advanced technologies of materials processing (the name of educational program) code and name of the educational program developed by the academic committee

Full name Position Workplace Signature Academic degree/ academic title **Chairperson of Academic Committee:** Nugman E.Z. Doctor PhD Head of the NAO Department of KazNRTU "Mechanical named after Engineering" K.I. Satpayev. Institute of Energy and Mechanical Engineering Teaching staff: Kerimzhanova Candidate of Technical Professor Department of M.F. Sciences. Associate Mechanical Professor Engineering Candidate of Technical Issametova M.E. Assoc. Department of Sciences Professor Mechanical Engineering Smailova G.A., Candidate of Technical Department of Assoc. Sciences Professor Mechanical Engineering **Employers:** Azimbekov M. K. Director LLP "Zhaken Kalsha" Students Esmukhambetova 2nd year Department of D.E. Master's "Mechanical student Engineering"

Table of contents

- List of abbreviations and designati
- 1 Description of educational program
- 2 The purpose and objectives of educational program
- 3 Requirements for evaluating the learning outcomes of an educational program
- 4 Catalog of disciplines
- 4.1 General information
- 4.2 The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines
 - 5 Curriculum of the educational program

List of abbreviations and designate

ECTS European Credit Transfer and Accumulation System

BD Basic disciplines

HEI Higher education institution

SMSE State mandatory standard of education

KazNRTU K. I. Satpayev Kazakh National Research Technical University

MEP Modular educational program

NJSC Non-profit joint stock Company

RWMS Research work of a master's student

EP Educational program

PD Profile disciplines

WC Working curriculum

IWMS Independent work of a master's student

EMC Educational and Methodological Council

AC Academic council

1 Description of educational program

EP 7M07228 - "Advanced technologies of materials processing" are focused on learning outcomes that form professional competencies in accordance with the requirements of the labor market.

The objects of professional activity of the master in EP 7M07228 - "Advanced technologies of materials processing" are:

- -digitalization of machine-building production, including information-sensor, executive and control modules, their mathematical, algorithmic and software, methods and means of their design, modeling, experimental research and design;
- theoretical and experimental studies of digitalization of machine-building production for various purposes.

The Master's degree in EP 7M07228 - " Advanced technologies of materials processing" can perform the following types of work and professional activities. Types of professional activities for which graduates who have mastered the

Master's degree program are preparing:

- research;
- design and engineering;
- organizational and managerial;
- installation and commissioning;
- service and operational;
- scientific and pedagogical.

A master's degree in the field of training "Advanced materials processing technologies" should be prepared to solve professional tasks in accordance with the profile orientation of the master's program and types of professional activity:

research activities:

- analysis of scientific and technical information, domestic and foreign experience in the field of development and research of digitalization of machine-building production; study of new methods of control theory, artificial intelligence technologies and other scientific areas that make up the theoretical basis of digitalization of machine-building production, compilation and publication of reviews and abstracts;
- carrying out theoretical and experimental research in the field of development of new samples and improvement of existing digitalization of machine-building production, their modules and subsystems, search for new additive technologies;
- conducting patent research accompanying the development of new digitalization of machine-building production, in order to protect intellectual property objects, the results of research and development;
- development of experimental samples of digitalization of machine-building production, their modules and subsystems in order to verify and substantiate the main theoretical and technical solutions to be included in the terms of reference for the implementation of development work;
- organization and conduct of experiments on the existing digitalization of machine-building production, their subsystems and individual modules in order to

determine their effectiveness and identify ways to improve, processing the results of experimental research using modern information technologies;

- preparation of reports, scientific publications and reports at scientific conferences and seminars, participation in the implementation of research and development results into practice; design and engineering activities:
- preparation of a feasibility study of new digitalization projects of machinebuilding production, their individual subsystems and modules;
- calculation and research of digitalization of machine-building production, control, information-sensor and executive subsystems using mathematical modeling methods, conducting mock-up and testing of existing systems, processing experimental data using modern information technologies;
- development of special software for solving design problems of digitalization of machine-building production, development of technical specifications and direct participation in the design of additive machines and equipment;

organizational and managerial activities:

- development of organizational and technical documentation (work schedules, instructions, plans, estimates) and established reporting on approved forms;
- organization of the work of small groups of performers involved in research, design work and experimental research;
- control over the implementation of measures for the prevention of occupational injuries, occupational diseases, prevention of environmental violations in the process of research and operation of digitalization of machine-building production;

installation and commissioning activities:

- participation in verification, adjustment, adjustment, assessment of equipment condition and setting up digitalization of machine-building production for various purposes, including both technical means and software control systems;
- participation in the coupling of software and hardware complexes with technical objects as part of the digitalization of machine-building production, in testing and commissioning of prototypes of such systems; service and operational activities:
- participation in verification, adjustment, adjustment and assessment of the state of digitalization of machine-building production for various purposes, as well as their individual subsystems, in setting up control hardware and software complexes;
- preventive control of the technical condition and functional diagnostics of digitalization of machine-building production for various purposes, as well as their individual subsystems;
- preparation of operating instructions for digitalization of machine-building production and their hardware and software, development of routine testing programs;
 - preparation of applications for equipment and components, preparation of

technical documentation for equipment repair; scientific and pedagogical activity:

- participation in the development of programs of academic disciplines and courses based on the study of pedagogical, scientific, technical and scientific-methodical literature, as well as the results of their own professional activities;
- participation in the formulation and modernization of individual laboratory work and workshops in professional disciplines;
- conducting training sessions with students, participating in the organization and management of their practical and research work;
- application and development of new educational technologies, including computer and distance learning systems.

2 The purpose and objectives of additional educational program

EP purpose:

Training of highly qualified and competitive scientific and pedagogical personnel for design, research, production, technological and management activities in the field of digitalization of materials processing technology by pressure.

EP tasks:

- formation of knowledge of the basics of advanced technologies in the field of materials processing;
- acquisition of theoretical and practical knowledge on the organization, conduct of scientific and experimental research in the field of development of innovative technologies in the field of procurement production;
- formation of knowledge and skills in the analysis of scientific and technical information, new methods of management theory, scientific directions of advanced materials processing technologies;
- formation of knowledge and practical skills of performing scientific and pedagogical activities, the use of computer and distance learning.

3 Requirements for evaluating the learning outcomes of an educational program

As a result of mastering the OP modules, students develop the knowledge, skills and abilities necessary to carry out all types of professional activities in the field of advanced technologies for processing materials by pressure, develop training skills to carry out further training with a high degree of independence, that is, the formation of professional, communication and key competencies that meet the requirements of employers.

The qualification assigned to the graduate is Master of Technical Sciences in EP 7M07228 - " Advanced technologies of materials processing".

4. Passport of the educational program

4.1. General information

No	Название поля	Примечание
_	Code and name field of education	7M07- Engineering, manufacturing and civil
1		engineering and ervir
2	Code and classification direction of	7M072 - Manufacturing and processing
_	personnel training	711072 Manaractaring and processing
2	<u>r</u>	M112 Technology of motorials prossure processing
	Group of educational programs	M113- Technology of materials pressure processing
4	Name of the educational program	7M07228 - "Advanced technologies of
_	Chart description of the advectional	materials processing ". The professional activity of graduates of the
3	Short description of the educational	educational program is aimed at digitalization of
	program	procurement production, processing of materials by
		pressure. In the educational program, students receive
		professional knowledge on digital design and
		modeling of new materials, product designs used for
		the manufacture of blanks, organization, conducting
		research in the field of materials processing by
		pressure. He has the skills of designing and
		developing innovative processes, methods of
		processing nanomaterials, powder materials,
		advanced technologies, machinery and equipment.
6	EP purpose	Training of highly qualified and competitive
		scientific and pedagogical personnel for design,
		research, production, technological and management
		activities in the field of digitalization of materials
_	ED.	processing technology by pressure.
	EP type	New EP
_	Level on NQF	7
_	Level on SQF	7
_	EP distinctive features	No
11	List of competencies of the educational	- Ability to follow ethical standards in professional
	program:	activity; - The ability to plan and solve problems of their own
		professional and personal development.
		- Ability to critically analyze and evaluate modern
		scientific achievements, generate new ideas when
		solving research and practical tasks;
		- The ability to design and carry out comprehensive
		research based on a holistic systematic scientific
		worldview using knowledge in the field of history and
		philosophy of science;
		- Willingness to participate in the work of domestic
		and international research teams to solve scientific
		and educational problems in the field of technologies
		for processing new materials;
		- Willingness to use modern methods and
		technologies of scientific communication in the state
1.0	T	and foreign languages;
12	Learning outcomes of the educational	ON1 Demonstrates the ability to search for new
	program:	scientific and technical information based on the integration of knowledge in educational and
		integration of knowledge in educational and professional fields, the use of a foreign language for
		business communication.
		ousiness communication.

	ON2 Expands and deepens the scientific worldview, focuses on the theories of the historical development of scientific knowledge to develop relevant research directions in professional activities. ON3 Owns the basic provisions and features of the practical psychologist in the field of management activities. ON4 Demonstrates knowledge of advanced materials, methods of their production and application in digital machine-building production. ON5 Analyzes, processes and applies innovative processes, additive technologies and advanced methods of processing materials by pressure. ON6 Demonstrates knowledge of digital and operational management systems, virtual production, lean production management theory ON7 Applies sound solutions for the design and application of flexible production systems, ensuring the safety of life, environmental and industrial safety of digital machine-building production. ON8 Applies modern methods of computer modeling of objects and technological processes, methods of computer-aided design of the life cycle of products. ON9 Demonstrates the ability to monitor production, planning and forecasting the development of technologies for processing materials by pressure.
13Form of training	daytime
14Period of study	2 years
15 Volume of the credits	120
16Language of education	russian
17 The awarded academic degree	Master of technical sciences
18 Developer(s) and authors:	The educational program was developed by the
	academic committee in the direction « <u>7M072-Manufacturing and processing</u> »

4.2 The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

No	Name of	Short description of discipline										
	discipline	•	ber	ON1	ON 2	ON 3	ON 4	ON 5	ON 6	ON 7	ON 8	ON 9
	•		of									
			credi									
			ts									
				C b :			1					
			-		c discipli							
4		hrs			compone	nt		I	I	1		
1		The course is designed for undergraduates		V								
		of technical specialties to improve and										
		develop foreign language communication										
		skills in professional and academic fields.										
	Hudlich landilade	The course introduces students to the										
	(professional)	general principles of professional and										
	,	academic intercultural oral and written										
		communication using modern pedagogical										
		technologies. The course ends with a final										
		exam. Undergraduates also need to study										
		independently (MIS).										
2		The purpose of the discipline is to		V		V						
		familiarize students with modern ideas	,									
		about the role and multidimensional										
		content of the psychological component of										
		managerial activity; to increase the	;									
		psychological culture of the future master										
		for the successful implementation of										
		professional activities and self-										
	Psychology of	improvement. Studies the main stages,	,									
		trends and trends in the development of										
		Kazakh and foreign management										
		psychology, the composition and structure										
		of management activities. Special										
		attention is paid to the psychological										
		component of the managerial function, the										
		individual characteristics of the manager,										
		the ethical and cultural components of the										
		manager, the basics of interaction.										

2	TT: -t	The subject of philosophy of science,	3	T						
3			3	V	V					
		dynamics of science, specifics of science,								
		science and pre-science, antiquity and the								
		formation of theoretical science, the main								
		stages of the historical development of								
		science, features of classical science, non-								
		classical and post-non-classical science,								
		philosophy of mathematics, physics,								
		engineering and technology, specifics of								
		engineering sciences, ethics of science,								
		social and moral responsibility of a								
		scientist and engineer.								
4		The course is intended for undergraduates	3	V	v					
		of the scientific and pedagogical	C		·					
		magistracy of all specialties.								
		Undergraduates will master the								
		methodological and theoretical								
		foundations of higher school pedagogy,								
		plan and organize the processes of								
		teaching and upbringing, master the								
		communicative technologies of subject-								
		subject interaction between a teacher and a								
		master in the educational process of a								
		university.								
		university.	Cvcl	e of basi	c discipli	noc				
			•	lective co	_					
5		The purpose of the discipline is to form a	5					V		
		systematic representation of the concept of	-					·		
		lean production, knowledge of theoretical								
		provisions and regulatory documents in								
		the field of quality management. The								
		discipline studies the basic concepts, the								
		history of the Lean management system,								
	Manufacturing	lean manufacturing as a model for								
		improving the efficiency of an enterprise;								
		the principles and essence of quality								
		management systems – Kaizen and 6								
		sigma. The tools of quality management								
		systems are considered; criteria of								
		1 -								
	_	economic indicators characterizing		1						

		changes in the activities of machine-							
		building enterprises.							
6		The purpose of the discipline is to acquire	5			V			v
		knowledge on the design and application							
		of advanced methods of processing materials by pressure. The discipline							
		studies special methods of processing							
		sheet and bulk parts using rolling, waste-							
		free stamping of sheet parts with							
		deformable metal, laser technology,							
		stamping of forgings from liquid metal,							
		stamping using superplasticity, roll							
		forming, production of blanks from							
		powder materials, magnetic pulse							
		stamping, electrohydraulic stamping. As a							
		result, undergraduates will be able to apply							
		their knowledge in the design of modern							
		technological processes in mechanical							
7		engineering. The purpose of the discipline is to acquire	5						
/		in-depth knowledge of mechanical	3			V			
		systems in the processing of materials by							
		pressure. The influence of external and							
		internal factors on the unevenness of							
		deformation of the workpiece material,							
		mechanical deformation schemes under							
	Mechanical systems	various pressure treatment technologies,							
	in processes of	factors affecting plasticity, resistance of							
	materials by pressure	materials to plastic deformation, methods							
		of analysis and evaluation of plasticity of							
		materials are studied. The processes of							
		destruction of materials and the influence							
		of various factors on the nature of destruction are studied. Modern							
		theoretical, scientific methods for the							
		study of friction processes in the							
		processing of materials by pressure.							
8	Methodology for the		5			V	V		
		computerized integrated production.	-			·	,		
		Automated product lifecycle management							
	single information	systems. CALS / FPI. Methodology of							

		<u> </u>		r	,	1		1	1	-
	-	data representation and exchange. STEP								
	enterprise	communication standard. The PLIB and								
		MANDATE standards. Technology of								
		data management about products. The								
		tasks and functions of the PDM-system.								
		Integrated logistics support. Integrated								
		information environment of the enterprise.								
9		The purpose of the discipline is to acquire	5				V			
		in-depth knowledge of mechanical								
		systems in the processing of materials by								
		pressure. The influence of external and								
		internal factors on the unevenness of								
		deformation of the workpiece material,								
		mechanical deformation schemes under								
		various pressure treatment technologies,								
	Mechanical systems	factors affecting plasticity, resistance of								
	in processes of	materials to plastic deformation, methods								
	materials by pressure	of analysis and evaluation of plasticity of								
		materials are studied. The processes of								
		destruction of materials and the influence								
		of various factors on the nature of								
		destruction are studied. Modern								
		theoretical, scientific methods for the								
		study of friction processes in the								
		processing of materials by pressure.								
10		The purpose of the discipline is the	5				v			V
		formation of knowledge of the basics of					·			·
		digital production in mechanical								
		engineering, the methodology of designing								
		additive technological processes. The								
		discipline studies the history of the								
		development of additive technologies,								
	rechnological	trends in the development of innovative								
	processes of additive	technologies; the basics of additive								
	manufacturing	manufacturing, the basic principles of								
		additive technologies. The theoretical and								
		technological foundations of the								
		production of products made of polymer								
		and metal materials using additive								
		technologies are considered; the stages of								

	٦	. 1127			1	1				1	1	1		
		additive manufacturing are shown and												
		examples of modern equipment for												
		manufacturing products using additive												
		technologies are given.	~ .	0 00		10								
			•	of profi	_									
	University component													
11		The goal is to form a knowledge system in	5						V		V			
		the field of new business models, business												
		processes and technologies in high-tech												
		industries. The course covers industrial												
		revolutions, Industry development												
		programs 4.0; modern information												
		technologies and marketing; the creation												
		of factories of the future, their architecture.												
		Digital transformation, principles and												
		management of a digital company. The concept of a virtual factory and the												
		construction of logistics networks for a												
		digital factory. "Digital double", technical												
		and operational data.												
12		The purpose of the discipline is the	5					V			v			
12		formation of knowledge in the field of	5					•			•			
		innovation, innovation management,												
		production of digital engineering. The												
		course examines the role of science in												
	Innovative Processes	innovative development, innovative												
	of Digitization for	pricipece, classification and planning of												
	Industrial	innovations; methods of engineering												
	Manufacturing	creativity; theory of solving technical												
		problems; technological approaches and												
		their characteristics. The prospects for the												
		development of high-tech industrial												
		technologies; automation and robotization												
		of machine-building production;												
1.2		digitalization of production are considered												
13		The purpose of the discipline is to acquire	5								V	V		
		knowledge of the basics of computer												
		modeling and computer technologies used in mechanical engineering. The												
	Digital design and	in mechanical engineering. The technologies of computer-aided design,												
		rapid prototyping, a complex information												
	modering	rapid prototyping, a complex information												

									1			
		model and an integrated information										
		environment used in computer systems										
		supporting the life cycle of mechanical										
		engineering products are considered.										
		Perspective directions of development of										
		computer technologies and industrial										
		systems, virtual engineering are										
		considered. Practical application of										
		computer modeling and design methods in										
		the production of products.										
14		The purpose of the discipline is to acquire	5									V
		knowledge of the basics of technical										
		diagnostics, production control systems at										
		all stages of the product life cycle. The										
		discipline examines the monitoring system										
		of production equipment, systems of the										
	A 1 1 D'.:/1	MDC/MDA class (Machine Data										
	Advanced Digital	Collection/ Machine Data Acquisition).										
	Manufacturing	Systems for monitoring the operation of										
	Monitoring	CNC machines: development of programs										
		that provide information about the										
		condition of the machine and production										
		personnel. The issues of optimization of										
		technological processes, control of the										
		efficiency of the use of equipment, tooling										
		and tools are considered.										
		•	Cycle	of profi	le discip	lines						
			Co	mponen	t of choic	ce						
15		The purpose of the discipline is to acquire	5				V]]	v	v
		knowledge and skills of working with										
		CAE/PLM design and engineering										
		analysis systems. The discipline studies										
		the modern concept of CAD construction,										
		the place of CAD in integrated systems of										
		design, production and operation of										
		engineering products. The features of CAE										
		systems for solving problems of design,										
		production and engineering calculations of										
		machine-building products are considered;										
		the effectiveness of CAD application in										
		the development of new machine designs;										

	software, information, linguistic and technical support of CAD. Computer aided design of machine parts and assemblies; engineering equipmen	- I							
16	design. The purpose of the discipline is the formation of theoretical knowledge and practical skills in designing machine-building products based on modern software products. The discipline examines PDM (Product Data Management) and PLM (Product Lifecycle Management) systems that PLM / PDM provide product lifecycle management marketing research, design of the production facility, planning and development of the production process technical support and maintenance disposal and recycling. Practical application of the programs SOLIDWORKS, Compass 3D, Invento for the formation of the composition of the product using 3D models.					V		V	
17	The purpose of the discipline is to acquire knowledge of methods for obtaining meta powders for additive manufacturing. The discipline examines metal powders based on nickel and cobalt, iron, titanium aluminum and other metals, technica features of powders; foreign standards fo materials for additive technologies ISO Gas and Plasma NIST, ASTM (USA). Are being studied Atomization atomization methods (gas, vacuum centrifugal), devices and processes fo producing metal powders. The method o plasma processing, the device and the principle of operation of the plasma torch the advantages of the method, the prospects of methods for obtaining meta powders for the manufacture of production by additive technologies are considered.				V		V		

18		The purpose of the discipline is to acquire	5	l	I	I			1		
18			3						V	V	
		theoretical and practical knowledge on the									
		development and operation of flexible									
		production modules in mechanical									
		engineering. The discipline examines the									
	Flexdle production	essence of flexible production automation,									
	systems and	source data and product range, the									
	complexes in	structure of flexible production modules,									
	mechanical	the sequence of module development. The									
		main structural elements of flexible									
	engineering	automated production (GAP): automatic									
		transport system, tool support and									
		automatic control systems, production									
		management systems; planning of the									
		GAP, technical and economic assessment									
		of the GAP project.									
19		The purpose of the discipline is to acquire	5						V	V	
		knowledge and practical skills in the use of							·	·	
		multipurpose equipment in automated									
		production. The design and technological									
		features of CNC machining machines are									
		considered; principles of development of									
		control programs and analysis of machine									
	Multipurpose	software; means of technological									
	equipment in digital										
	manufacturing	implementation of 3D printers are									
		considered; features of their maintenance,									
		diagnostics and operation. The study of the									
		software of CNC equipment,									
		programming features, issues of									
		debugging and editing programs, the									
		advantages of multipurpose equipment in									
		digital production.									
20		The purpose of the discipline is to form	5				V				
20		knowledge of the problems of creation,	5				V				
		research and application of metallic									
	Nanomaterials for	nanomaterials, properties of nanomaterials									
	processes of	and methods of their production. The									
	processing	discipline examines the physical									
		foundations of nanotechnology, methods									
		for studying nanostructures and properties;									

	_								
		the use of nanomaterials in mechanical engineering. The principles and methods of obtaining functional nanomaterials are studied: carbon, semiconductor, photonic crystals, films of surfactants. Types and methods of obtaining structural nanomaterials (metals, ceramics, composite materials), properties of structural nanomaterials.							
21		The purpose of the discipline is the	5			V	V		
21	Operating Systems for Additive Manufacturing	formation of professional competencies in the design and development of additive manufacturing technologies. The discipline is based on the study of the methodology of designing additive technological machines and complexes, requirements for additive technological equipment, the manufacturability of equipment. The construction of computer 3D objects based on tomographic data, methods of non-contact formometry and photogrammetry, methods of computer modeling are considered. Are being studied technical means and software of modern additive manufacturing; selection of printing parameters and its optimization.	3			V	V		
22		The purpose of the discipline is to form knowledge of the mechanism and laws of creating composite and powder materials, mastering engineering skills in building technological processes for obtaining powder materials. The discipline studies the essence of powder metallurgy, prospects and main directions of development. The physical and technological properties of powders, methods of their determination, mechanical and physico-chemical methods of obtaining powders, methods of choosing a method for obtaining powder	5		V	V			

	_									
		are considered. Theoretical foundations of								
		powder forming, theory and technology of								
		sintering.								
23		The purpose of the discipline is to acquire	5					V		
		knowledge on ensuring the safety of life in								
		additive manufacturing. The discipline is								
		based on the study of normative and								
		technical documents on labor protection,								
		work safety in areas equipped with								
	Occupational Health	additive equipment. The main categories								
		of work in additive manufacturing are								
	Additive	considered: material extrusion, powder								
	Manufacturing	layer melting, photopolymerization in a								
	8	bath, material jet processing, binder jet								
		processing, sheet lamination.								
		Classification of hazards arising during the								
		operation of additive machines and								
		equipment. Safety and security measures								
		for work on additive equipment.								
24		The purpose of the discipline is to acquire	5				V		V	
		knowledge of the design of digital								
		machine-building industries, methods and								
		means of construction based on								
		information and production technologies.								
		The discipline examines the concept of								
		information support for the life cycle of								
	D': '4-1 G	products, the principles of building								
	Digital Systems of	automated production, the methodology of								
	Industrial	end-to-end automated design of								
	Manufacturing	mechanical engineering products. As a								
		result, students will be able to develop								
		highly efficient technological processes								
		and equipment using modern computer-								
		aided design systems, create new technical								
		solutions in the field of mechanical								
	•	1		1						
		engineering technology, equipment and								

5. Curriculum of the educational program

MINESTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHISTAN KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY mined after K.LSATPAYEV

TOTAL BOURD

of Educational Program on enrollment for 2022-2023 academic year

Educational program 7M07228 - "Advanced materials processing technologies"

Group of educational programs M113 - "Technology of materials processing by pressure"

Academic degree: Master of technical sciences Form of study: full-time Duration of study: 2 year Alberation of face-re-face training based on courses and sensences Total Discipline Name of disciplines Cycle nount in amount. TSIS) is been control Legarie code teclatope crediti 3 seminior 4 seminior I semester 2 semistrat CYCLE OF BASIC DISCIPLINES (BD) M-1. Engineering training module (university component) English (professional) BDUG HUM214 Management Psychology BDU 90 17071 60 60 5/0/1 History and philosophy of science BDUS 90 1/0/1 60 Higher school pedagogy BD U 90 component of choice MSM200 Lean digital manufacturing 150 2/0/1 105 E BD CCH 5 Insuvative methods of processing materials by MSM211 Festinological processes of additive mentanena 150 2/071 105 Е 5 Methodology of creation and management of a BD CCH 5 MCH206 ougle information space of an industrial MCH278 Mechanochemical pressure genements 5 3 150: 2/0/1 ins E BD CCH Machanical systems in the process of pressure MICH270 restment CYCLE OF PROFILE DISCIPLINES (PD) M-2. The module of digitalization of materials processing by pressure (university component, component of choice) Virtual factory and Augmented reality 150 2/071 E MSM201 PDIC 105 roduction 150 2/0/1 105 E MSM248 PD-UC Digital design and modeling PD/JC 4 150 20/1 105 Advanced digital production nonitoring. besovative processes of digitalization of 4 2/0/1 105 ď. MSNI200 PD-DC 150 machine-building production MSM210 CAE/FLM of machine-building production 2/0/1 105 E PD CCH 159 MCH244 PLM/PDM processes Matriparpose equipment in digital production (ND200 5 150 2/0/1 105 Ł PD CCH 5 150245 Flexible production systems and complexes in primarige learnables NICH284 Technological bases of powder metallargy E 5 PD CCH 3 150 1405 MCH299 Nationalizada for pressure treatment MSM211 District systems of machine-building production 200 105 PD.CCH 150 MSM216 Adding Manufacturing operating systems Occupational health and safety of additive MSM207 5 Ė 2/07 105 РО ССИ 130 menufacturing MISSIET4 Gas and plasms storozation M-3. Practice-oriented module BD U AAP229 Pedagogical practice AAP256 Research practice M-4. Experimental rewarch module Research work of a mustur's student, HW245 AAP251 including internship and completion of a UĽ master's thesis. Research work of a master's student, RWMS AAP241 including interaship and completion of a UC master's thenis Research work of a master's student, RWMS including interrship and completion of a AAP254 UC master's thesis

AAP255	Research work of a master's student, including intereship and completion of a master's thesis	RWMS UC	14					14
			M-5, M	of final attestation	_			
ECA205	Preparation and defense of a master's thesis	FA	12					-12
-	Total based on UNIVERSITY:			1	30	30	30	30

	Cycles of disciplines	ried of study Credits					
Cycle code			sainersity component (UC)	component of rhsice (CCH)	Total		
BO	Cycle of basic disciplines		20	15	35		
PD	Cycle of profile disciplines		25	24	49		
	Total for theoretical training:	· ·	45	39	84		
	RWMS	1		- 51	24		
FA	Final attestation	12			.12		
	TOTAL:	13	45	39	120		

Decision of the Academic Council of Kazata named after K.Satpayev, Protocol Sol 30+ "28 - 24 20 28s.

Decision of the Educational and Methodological Council of Kazntu named after K.Satjinyev, Protocol No 7 or 11 1 0 4 20 22.

Decision of the Academic Council of the Institute E&ME. Pophogol No 5 or " 20" 01 20 Ms.

Vice-Rector for Academic Affairs 4 Land Zhantikov

E&ME Institute Director Kyrelemes

ME.SC&M. Inspirement Head H. Issumeton